Image guidance Strategies for Motion Management

4D and Couch Tracking Slides Courtesy of Prof. Matthias Guckenberger

Frank Lohr, Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim
Disclosures

Research and Travel Grants from Elekta
Board Member of C-Rad
Overview

- Motion Compensation Strategies
- Breath Hold Imaging and Treatment
- Ultrasound-based positioning
- Does it work clinically?
- Where do we go from here
Overview

- Motion Compensation Strategies

- Breath Hold Imaging and Treatment

- Ultrasound-based positioning

- Does it work clinically?

- Where do we go from here
Motion Compensation Strategies

- 4D Treatment Planning, Individually Adapted Margins
- Breath Hold Treatment
- Gating
- Tracking
 - Robotic Tracking
 - Gimbal Tracking
 - Couch Tracking
 - Sequence Resorting

Imaging Modalities:
2D, 2D/3D, 3D X-ray based
Transponder based
Ultrasound based
Motion compensation techniques: 4D IGRT

Treatment planning

Target volume definition: ITV concept

Pro:
• Large clinical experience
 • Low toxicity
 • High rates of LC
• Short RT delivery times
• Straight work-flow

Cons:
• Larger target volumes
Motion compensation techniques: 4D IGRT

Treatment planning

Target volume definition: respiration correlated 4D-CT

End-exhalation

End-inhalation

Fusion
Motion compensation techniques: 4D IGRT

Treatment planning

Target volume definition:

Motion compensation using the internal target volume (ITV) technique

End-exhalation

End-inhalation
Motion compensation techniques: 4D IGRT

Treatment planning

Target volume definition:

PTV = ITV + 5mm in all directions
Motion compensation techniques: 4D IGRT

Evaluation of patient set-up error
Motion compensation techniques: 4D IGRT

Evaluation of target position in each breathing phase
Motion compensation techniques: 4D IGRT

Treatment planning:
Reference Image

Treatment delivery:
Verification Image

4D IGRT: Registration of corresponding phases
Motion compensation techniques: 4D IGRT

Treatment planning:
Reference Image

Treatment delivery:
Verification Image

End-exhalation as reference: easy for visual verification
Motion compensation techniques: 4D IGRT

Bone set-up

<table>
<thead>
<tr>
<th>Clipbox</th>
<th>Mask</th>
<th>Adjust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx (cm)</td>
<td>0.00</td>
<td>-0.21</td>
</tr>
<tr>
<td>Ty (cm)</td>
<td>0.00</td>
<td>-0.47</td>
</tr>
<tr>
<td>Tz (cm)</td>
<td>0.00</td>
<td>-0.38</td>
</tr>
</tbody>
</table>

Tumor set-up

<table>
<thead>
<tr>
<th>Clipbox</th>
<th>Mask</th>
<th>Adjust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx (cm)</td>
<td>0.21</td>
<td>0.00</td>
</tr>
<tr>
<td>Ty (cm)</td>
<td>0.47</td>
<td>0.00</td>
</tr>
<tr>
<td>Tz (cm)</td>
<td>0.38</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Visualization of the effects of base-line shifts
Motion compensation techniques

The concept of Couch and MLC tracking
Motion compensation techniques

Comparison of couch and MLC tracking

Heidelberg: Siemens 160 MLC

Würzburg: HexaPOD Evo
Motion compensation techniques

Comparison of couch and MLC tracking: Geometrical accuracy in lung cancer

MLC

HexaPOD
Motion Compensation Strategies

- 4D Treatment Planning, Individually Adapted Margins
- Breath Hold Treatment
- Gating
- Tracking
 - Robotic Tracking
 - Gimbal Tracking
 - Couch Tracking
 - Sequence Resorting

Imaging Modalities:
2D, 2D/3D,3D X-ray based
Transponder based
Ultrasound based

Guckenberger, Richter, Booda-Heggemann, Lohr, in press
Overview

- Motion Compensation Strategies

- Breath Hold Imaging and Treatment

- Ultrasound-based positioning

- Does it work clinically?

- Where do we go from here
Boda-Heggemann et al., Radiother Oncol, 2011
Clinical Setup:
2. Surface-based Surveillance

Stieler et al., SUON, 2012
Stieler et al., SUON, 2013
Breath hold surveillance
Clinical Setup:
Flow-Based Breath Hold Triggering
Overview

- Motion Compensation Strategies

- Breath Hold Imaging and Treatment

- Ultrasound-based positioning

- Does it work clinically?

- Where do we go from here?
TPUS & TAUS Fused with CT

5 Clicks
Tracking Possibilities with the Portal Vein
Clinical Setup:
3. Direct Liver Tracking
Overview

- Motion Compensation Strategies
- Breath Hold Imaging and Treatment
- Ultrasound-based positioning
- Does it work clinically?
- Where do we go from here
Fallbeispiel hypofraktionierte Lungenbestrahlung

Planungs-CT: 02.09.09
PET-CT: 31.08.09
Radiatio
Sept 2009
Nachsorge-CT: 26.11.09
Nachsorge-CT: 06.10.10

80 jähriger Patient mit NSCLC Stadium I, T2aN0M0
Nebendiagnosen: COPD, Emphysem, KHK, art. Hypertonie
FEV1: 2,3l

Zurzeit lokal kontrolliert und progressionsfrei
Lungen - Ergebnisse

Overall Survival

Progression Free Survival

Local Control

Local Control - abhängig von Dosis

BED2 > 80 Gy

BED2 < 80 Gy
Functional imaging: PET -> complete remission
Local control

A

BED2 > 78Gy
BED2 < 78Gy
p = 0.0999

B

PTV < 67ccm
PTV > 67ccm
p = 0.2412
Overview

- Motion Compensation Strategies
- Breath Hold Imaging and Treatment
- Ultrasound-based positioning
- Does it work clinically?
- Where do we go from here
Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer

Hansjoerg Wertz1,5, Dzmitry Stsepanou1, Manuel Blessing1, Michael Rossi2, Chris Knox3, Kevin Brown3, Uwe Gros2, Judit Boda-Heggemann1, Cornelia Walter4, Juergen Hesser1, Frank Lohr1 and Frederik Wenz1

kV

MV

http://www.elekta.com/healthcare_international_beaumont_work_results_breakthrough.php
Conclusion

Several motion compensation strategies successfully reduce motion effects in clinical radiotherapy.

Breath hold treatments under IGRT control are easy to perform and precise.

Ultrasound is a very precise positioning tool, particularly suited for breath hold liver radiosurgery and is ideal for noninvasive continuous target surveillance/tracking where applicable.

Clinical results with these strategies are good.